Central limit theorems and uniform laws of large numbers for arrays of random fields
نویسندگان
چکیده
منابع مشابه
Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields.
Over the last decades, spatial-interaction models have been increasingly used in economics. However, the development of a sufficiently general asymptotic theory for nonlinear spatial models has been hampered by a lack of relevant central limit theorems (CLTs), uniform laws of large numbers (ULLNs) and pointwise laws of large numbers (LLNs). These limit theorems form the essential building block...
متن کاملLaws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES
In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.
متن کاملFrom Uniform Laws of Large Numbers to Uniform Ergodic Theorems
The purpose of these lectures is to present three different approaches with their own methods for establishing uniform laws of large numbers and uniform ergodic theorems for dynamical systems. The presentation follows the principle according to which the i.i.d. case is considered first in great detail, and then attempts are made to extend these results to the case of more general dependence str...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2009
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2009.02.009